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Abstract

This project focused on the development of a novel control-theoretic framework with a set of
tractable computational methods for robust manipulation and optimal control of inhomogeneous
quantum ensembles. Engineering the time evolution of quantum ensembles in a desired man-
ner by using electromagnetic pulses of appropriate shape and frequency is an indispensable step
that enables many applications in quantum control, such as nuclear magnetic resonance (NMR)
spectroscopy and imaging (MRI), laser cooling, solid statephysics, quantum computation, and
quantum information processing. This project carried out afundamental investigation of ensem-
ble control systems. New methods based on geometric controltheory were established to analyze
controllability of quantum ensembles through polynomial approximations, which inspired the de-
velopment of a unified computational method based on pseudospectral approximations for solving
optimal ensemble control problems. This newly developed computational method has been used
to design optimal pulses for protein NMR spectroscopy, which have been experimentally imple-
mented yielding a significant sensitivity enhancement overthe conventional pulses. The scope of
this project was extended beyond the control of quantum ensembles to general ensemble systems,
where controllability characterization for linear and nonlinear ensemble systems was provided, and
efficient optimization-free computational methods for optimal control synthesis for such systems
were developed.

Accomplishments and New Findings

The objective of this project is to carry out a fundamental investigation of ensemble control prob-
lems involving the guidance of a large number or a continuum of structurally similar dynamical
systems by the use of a common open-loop control. This class of problems originates from the
study of the complex dynamics of large-scale quantum systems [1, 2, 3]. The novel achievements
made through this funding support lead to further theoretical and practical developments in control
theory with broad impact on the advancement of state-of-the-art quantum technologies.

Fifteen journal [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,18] and thirteen peer-reviewed
conference [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] papers have been published through
the funding support period. Our research is multidisciplinary, and these papers appear in leading
scientific journals and international conference proceedings across several disciplines including
control theory and engineering, applied mathematics, physics, and bioengineering. The significant
achievements and new findings through the support of this AFOSR YIP funding are summarized
below.

1 Controllability of Ensemble Systems
We have extended the notion of ensemble controllability constructed in our previous work on
quantum systems [3, 32] to general linear and nonlinear ensemble systems described below.
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1.1 Finite-Dimensional Time-Varying Linear Ensemble Systems
We derived the necessary and sufficient controllability conditions for an ensemble of finite-dimensional
time-varying linear systems indexed by a parameterβ varying over a compact setK, given by

d

dt
X(t, β) = A(t, β)X(t, β) +B(t, β)u(t), β ∈ K ⊂ R, (1)

where the state isX ∈ M ⊂ R
n, andA ∈ Ln×n

∞
(D) andB ∈ Ln×m

2
(D) aren × n andn × m

matrices, respectively, whose elements are complex-valued L∞ andL2 functions defined on a
compact setD = [0, T ] × K ⊂ R

2. The ensemble is controlled by the open-loop inputu ∈
Lm
2
[0, T ]. We derived a Fredholm integral equation defined by the input-to-state operator that

characterizes the dynamics of the ensemble, given by

(Lu)(β) =

∫

T

0

Φ(0, σ, β)B(σ, β)u(σ)dσ = ξ(β), (2)

whereΦ(t, 0, β) is the transition matrix for the inhomogeneous systemẊ(t, β) = A(t, β)X(t, β),
ξ(β) = Φ(0, T, β)XF (β) − X0(β), andX0(β) andXF (β) are the prescribed initial and terminal
states. We showed that controllability of the ensemble system (1) is related to the singular system of
the compact operatorL as in (2), and is characterized by its singular values and singular functions
[7]. We also derived an accompanying optimal ensemble control law as an infinite sum of weighted
eigenfunctions of the operatorL [7].

1.2 Nonlinear Ensemble Systems
The dynamics of a (weakly forced) nonlinear oscillator can be described by the phase-reduced
model, θ̇ = f(θ) + Z(θ)u(t), whereθ is the phase variable,f represents the system’s baseline
dynamics,Z is known as the phase response curve (PRC), andu ∈ U ⊂ R is the external stimulus
[33]. Phase models are widely employed in physics, chemistry, and biology [34] to study rhythmic
systems where the oscillatory phase, but not the full state,can be observed, and where the PRC
can be obtained experimentally. Employing tools from geometric control theory, we have analyzed
the controllability of an ensemble of isolated nonlinear oscillators described bẏθi = fi(θi) +
Zi(θi)u(t), i = 1, . . . , N , wherefi andZi are real-valued functions andu ∈ R [19, 16]. We showed
that controllability is determined by the periodicity, or recurrence, offi and then by{f,Z}LA, that
is, the Lie algebra generated byf = (f1, . . . , fN)

′ andZ = (Z1, . . . , ZN)
′.

2 Computational Optimal Ensemble Control

2.1 A Unified Computational Method for Optimal Pulse Design in Quantum
Control

Designing an external field (a pulse sequence) that guides a quantum ensemble from an initial
state to a desired target state in an optimal manner is a fundamental step in many applications in
quantum control. Analytical solutions to such an optimal ensemble control problem are in general
arduous to obtain or entirely unavailable, with the exception of a few special cases. Inspired by
the method of converting an ensemble control problem to a problem of polynomial approximation
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Figure 1: Experimental excitation profiles of broadbandπ pulses. (a) The optimal broadbandπ pulse shape was
derived by the multivariate pseudospectral method with therespective number of discretizations in time and frequency,
N = 36 andNω = 12, to cover the bandwidth[−40, 40] kHz with limited rf amplitudeB1(t) ≤ 20 kHz for all t
and maximum durationT = 120µs. (b) The excitation profiles correspond to the optimal broadband pulse (red) and
conventional hard pulse (black).
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(a) Optimal Inversion Pulse
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(b) Adiabatic Inversion Pulse
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(c) Hard Inversion Pulse

Figure 2:HSQC spectra comparison. The1H-13C correlated HSQC spectra of [13C,15N] GB1 sample using optimal
inversion pulses (a), standard Bruker adiabatic inversionpulses (Crp60.0.5.20.1) (b), and conventional hard inversions
(c). Spectra on the left of each pair were recorded when the13C-inversion pulses were on resonance (at 50 ppm), while
the spectra on the right were recorded when the13C-inversion pulses were 31 kHz (at -200 ppm) off resonance tothe
up-field.

proposed in our previous work [3, 32], we developed a unified computational method for optimal
pulse design in quantum control based on multidimensional pseudospectral approximations, by
which a continuous-time optimal control problem of pulse design is discretized to a constrained
nonlinear optimization problem using multivariate interpolating polynomials [6, 10]. This is the
first work introducing pseudospectral methods to the quantum pulse design community.

Applications to Protein NMR Spectroscopy: Recently, in collaboration with Harvard Medical
School, we have designed optimal broadband excitation (π/2) and inversion (π) pulses for pro-
tein NMR spectroscopy using this newly developed method. These broadband pulses have been
experimentally implemented, yielding a significant sensitivity enhancement over the conventional
hard pulse and adiabatic pulse while requiring a much shorter duration and lower energy [6]. The
optimal pulse shape and the corresponding experimental excitation profile of the broadband inver-
sion pulse are shown in Figure 1(a) and 1(b), respectively. The excitation profile was recorded
with resonance offset ranging from -60 kHz to 60 kHz in steps of 2 kHz and showed that our opti-
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Figure 3: Optimal control of an ensemble of harmonic oscillators as in(3). An ensemble of harmonic oscillators
is steered (a) from the shape of a star to the shape of a maple leaf. The color indicates the natural frequency of the
samples, where red and blue denoteω = 10 andω = −10, respectively. (b) displays the ensemble control that
accomplishes the desired transfer.
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(b) Optimal Ensemble Control Law

Figure 4: Frictionless quantum transport of atoms. (a) An ensemble ofatoms with the frequenciesω ∈ [0.5, 1] is
transported from the initial state(0, 0, 0)′ to the target state(1, 0, 1)′. (b) The ensemble control law that accomplishes
the desired transport is computed using the SVD method described in Section 2.2.

mal pulse has a noticeably higher average excitation profileover the designed bandwidth[−40, 40]
kHz than the conventional hard pulse. The two-dimensional spectra in Figure 2 illustrate a signif-
icant sensitivity enhancement over a conventional hard pulse and adiabatic pulse while requiring
a much shorter duration - approximately a 20 times sensitivity enhancement over adiabatic pulses
with a much shorter duration (120µs versus 500µs) [6]. In addition, this pseudospectral method
can easily be modified to solve problems with other objectives, such as minimum-energy and
time-optimal pulses, and requires much less computationalpower and time than state-of-the-art
numerical methods for pulse design in NMR and MRI [6], such asthe GRAPE algorithm [35] and
the Krotov method [36].

Convergence of the Multidimensional Pseudospectral Method: We have, moreover, studied the
convergence properties of this multivariate pseudospectral method for optimal ensemble control in
Sobolev space, and it has been shown that given appropriate regularity conditions on the system
dynamics and the control function, a sequence of optimal solutions to the discretized problem
converges to an optimal solution of the original continuous-time optimal control problem [12, 20].
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2.2 A Direct SVD Algorithm for Optimal Ensemble Control Synthesis for
Linear Systems

As described in Section 1.1, the ensemble controllability conditions for time-varying linear sys-
tems as in (1) are characterized by the singular values and the corresponding singular functions of
the linear operator (2) that governs the system dynamics. This new finding led us to develop an
optimization-free computational algorithm based on the singular value decomposition (SVD) for
the synthesis of optimal ensemble control laws for such linear ensemble systems [26]. The idea
is to approximate the action of the compact operatorL as in (2) on a functionu ∈ Lm

2
[0, T ] by a

matrix acting on an appropriate vector of sampled values ofu.
This SVD based algorithm, for example, has been successfully used to design optimal controls

that steer the ensemble system (1) between any desired stateconfigurations. A canonical example
is to control an ensemble of harmonic oscillators,

d

dt

[

x1(t, ω)
x2(t, ω)

]

=

[

0 −ω
ω 0

] [

x1(t, ω)
x2(t, ω)

]

+

[

u(t)
v(t)

]

, (3)

with a variation, or uncertainty, in their frequencies,ω ∈ [ω1, ω2] ⊂ R. Figure 3 displays initial
and final configurations between which the ensemble system (3) with ω ∈ [−10, 10] is transferred
by the indicated optimal controls. Figure 4 illustrates theminimum-energy frictionless quantum
transport of atoms with a variation in their frequencies using a harmonic trap [26, 17]. It is shown
that the optimal ensemble control law displayed in Figure 4(b) is able to compensate for the varia-
tion in the frequency and achieve the desired transport. Furthermore, an iterative procedure based
on this SVD method was developed for optimal control synthesis for bilinear ensemble systems
[29].

3 Minimum-Time Frictionless Atom Cooling
Adiabatic processes are ubiquitous in cold atom physics, nuclear magnetic resonance, optics and
other fields [37, 38, 39]. Although useful for preparing states robustly with respect to perturbations,
these processes may become impractical due to their long duration. This has prompted a surge of
theoretical and experimental activities to find shortcuts to adiabaticity in quantum systems. Such
a task can be formulated as time-optimal control of quantum dynamics. We investigated several
optimal control problems motivated by promising applications in quantum optics and coherent
spectroscopy. These include time-optimal control of frictionless atom cooling in harmonic traps
[5], which is a core of modern quantum technology [40, 41, 42]; frictionless decompression in
minimum time of Bose-Einstein condensates [13], which is a workhorse for atomic physics exper-
iments; and constrained minimum-energy control for dissipative spin systems [4]. We solved these
optimal control problems analytically and verified the results with a pseudospectral method.
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